导读 HL是指HL定理,是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。判定定理为:如果两个...
HL是指HL定理,是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。
判定定理为:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为HL)是一种特殊判定方法,可转换为ASA,是在这种情况下可以确定SSA成立的一种情况。
证明两Rt△全等的条件:两个直角(Rt)三角形的一条斜边与一条直角边分别对应相等,则两个直角(Rt)三角形全等。
扩展资料:性质全等三角形的对应角相等。
2、全等三角形的对应边相等。
3.、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
全等三角形和例题(7张)5、全等三角形的对应角的角平分线相等。
版权声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢您的支持与理解。