1,有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。
0也是有理数。
有理数是整数和分数的集合,整数也可看做是分母为一的分数。
有理数的小数部分是有限或为无限循环的数。
不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
2,有理数集可以用大写黑正体符号Q代表。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。
有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
扩展资料:一,整数整数,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的数的统称,包括负整数、零(0)与正整数。
和自然数一样,整数也是一个可数的无限集合。
这个集合在数学上通常表示为粗体Z或,源于德语单词Zahlen(意为“数”)的首字母。
在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。
二,有理数命名由来:“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。
事实上,这似乎是一个翻译上的失误。
有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。
中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。
所以这个词的意义也很显豁,就是整数的“比”。
与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
参考资料:百度百科-有理数。
版权声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢您的支持与理解。