手动开平方 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;小数部分从最高位向后两位一段隔开,段数以需要的精度+1为准。
2.根据左边第一段里的数,求得平方根的最高位上的数。
(在右边例题中,比5小的平方数是4,所以平方根的最高位为2。
) 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
4.把求得的最高位的数乘以20去试除第一个余数,所得的最大整数作为试商。
(右例中的试商即为[152/(2×20)]=[3.8]=3。
) 5.用商的最高位数的20倍加上这个试商再乘以试商。
如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试,得到的第一个小于余数的试商作为平方根的第二个数。
(即3为平方根的第二位。
) 6.用同样的方法,继续求平方根的其他各位上的数。
用上一个余数减去上法中所求的积(即152-129=23),与第三段数组成新的余数(即2325)。
这时再求试商,要用前面所得到的平方根的前两位数(即23)乘以20去试除新的余数(2325),所得的最大整数为新的试商。
(2325/(23×20)的整数部分为5。
) 7.对新试商的检验如前法。
(右例中最后的余数为0,刚好开尽,则235为所求的平方根。
) 如遇开不尽的情况,可根据所要求的精确度求出它的近似值。
在《九章算术》里就已经介绍了上述笔算开平方法。
手动开立方 1.将被开立方数的整数部分从个位起向左每三位分为一组; 2.根据最左边一组,求得立方根的最高位数; 3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数; 4.用求得的最高位数的平方的300倍试除上述余数,得出试商; 5.把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数; 6.用同样的方法,继续求立方根的其他各位上的数。
对新试商的检验亦如前法。
版权声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢您的支持与理解。