分数与整数相乘,用分数的分子和整数相乘的积做分子,分母不变。
整数与分数相乘,用整数和分数的分子相乘的积做分子,分母不变。
分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
三个数相乘,为了简便,可以先把所有分数的分子和分母约分,再把约分后的分子、分母相乘。
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
分数除法的意义与证书出发的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数(0除外),等于分数乘这个整数的倒数。
表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
把小数化成百分数,要把小数点向右移动两位,同时在后面添上百分号(位数不够要用0补齐)。
把百分数化成小数,要把百分号去掉,同时小数点向左移动两位。
把化成百分数,通常先把分数化成小数(遇到除不尽或小数位数多时,一般保留三位小数),再把小数化成百分数。
把百分数化成分数,先把分数改写成分母是100的分数,再把能约分的约分成最简分数。
画圆时,固定的一点叫做圆心,圆心通常用字母O表示;从圆心到圆上任意一点的线段,叫做半径,半径通常用字母r表示;通过圆心,并且两端都在圆上的线段,叫做直径,直径通常用字母d表示。
如果一个平面图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是对称轴图形。
折痕所在的这条直线叫做对称轴。
围成圆的曲线的长是圆的周长。
对于大小不同的圆,周长总是直径的3倍多一些。
这个倍数是个固定的数,我们把它叫做圆周率,用字母(读pāi)表示。
发芽率=发芽种子数/试验种子总数*100%y=kx(k>0),y随x的增大而增大,则y与x成正比, y=k/x(k>0),y随x的增大而减小,则y与x成反比, 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、 加数+加数=和 和-一个加数=另一个加数 7、 被减数-减数=差 被减数-差=减数 差+减数=被减数 8、 因数×因数=积 积÷一个因数=另一个因数 9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒5、 角 直线;直线是无限的。
线段:直线上两点间的一段叫做线段。
线段有两个端点。
线段是直线的一部分。
射线:把线段的一端无限延长,就得到一条射线。
射线只有一个端点。
角:从一点引出两条射线所组成的图形叫做角。
这个点叫做角的顶点。
这两条射线叫做角的边。
角通常用符号“∠”来表示。
如下图: 边 顶点 边 比较角的大小:先把两个角的顶点和一条边重合,然后看另一条边的位置。
哪个角的另一条边在外面,哪个角就大。
如果另一条边也重合,说明两个角相等。
角的大小要看两条边的大小叉开的越大,角越大。
角的大小与角的两边画出的长短没有关系。
角的度量:角的计量单位是“度”,用符号“°”表示。
把半圆分成180等份,每一份所对的角叫做1度的角。
记作1°,用量角器量角的时候,把量角器放在角的上面,使量角器的中心和角的顶点重合。
0°该度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数。
角的分类:大于0°,而小于90°的角叫做锐角。
等于90°的角叫做直角。
大于90°而小于180°的角叫做钝角。
角的两边成一条直线,等于180°的角叫做平角。
一条射线绕它的端点旋转一周所成为一个360°的角叫做周角。
垂线:两条线相交成直角时,这两条线叫做互相垂直,其中一条直线叫做另一条直线的垂线(如下图1),这两条直线的交点,叫做垂足。
平行:在同一个平面内永不相交的两条直线叫做平行线(如下图2)。
也可以说这两条直线互相平行。
垂直 平行。
版权声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢您的支持与理解。